

Water Webs - Objectives

- Identify drainage patterns and use new terminology
- Associate drainage patterns with observed features in aerial photos

New Terminology

- Drainage Network the web of channels that drains water from the landscape
- Drainage Pattern the manner in which the channels drain the landscape as a function of land topography, climate, and geology.

Part 1 – Concept Introduction

VENATION

Arcuate secondary veins bending toward apex

Longitudinal veins aligned mostly along long axis of leaf

Pinnate secondary veins paired oppositely

Cross-Venulate small veins connecting secondary veins

Palmate several primary veins diverging from a point

Reticulate smaller veins forming a network

Dichotomous veins branching symmetrically in pairs

Parallel veins arranged axially, not intersecting

Rotate in peltate leaves, veins radiating

Part 1 – Concept Introduction

Part 2 – Communication

• Grab a partner!

Letter: _____

Letter:

Letter: _____

Letter: _____

Letter: _____

Sources:

Twidale, C.R. (2004), Earth-Science Reviews. Accessed: http://www.sciencedirect.com/ science/article/pii/ S0012825204000212

Letter: _____

and Salaem State: http://w3.salemstate.edu/ ~lhanson/gls210/ gls210_streams3.htm

Part 3 – Competition!

1B 2F 3I 4D 5A 6J 7N 8G 9M 10C 11H 12L 13E 14K

Sharing Questions

- How did they approach the task? What was the first thing you did in your team?
- What clues did you look for to help make matches? What was the best clue?
- Were there any features or situations that caused confusion or uncertainty and how did you work through it?

Counting Creeks

Objectives

- Learn new terminology and explore the concept of density.
- Describe landscape features that factor into drainage density.
- Relate drainage density to the risk of flooding.

New Terminology

- Density a quantity per unit area or volume.
 - Physical substances (gas, liquid, solids)
 - Tree canopy
 - Populations
- Drainage density length of water channels (streams, creeks, rivers) per watershed area

Part 1 – Active Analogy Activity

Drainage Density

- Factors affecting drainage density and flooding include:
 - Annual rainfall
 - Soil permeability
 - Topography
 - Land use (runoff)

Part 2 – Calculations!

Hypothesize: Consider the creek characteristics and rank them using their creek numbers in order from greatest to least density:

Watershed Densities

- 1. Half Pone Creek 42.97 mi / 26.13 mi2 = 1.64
- 2. Stock Creek 57.08 mi / 17.97 mi2 = 3.29
- 3. Stokes Creek 47.82 mi / 22.80 mi2 = 2.09
- 4. Big Creek 45.12 mi / 21.02 mi2 = 2.15
- 5. Abrams Creek 69.33 mi / 18.48 mi2 = 3.69

Processing Questions

- Which watershed is most likely to flood?
- Which is least likely?
- What factors affecting flooding do you see around your community?

Stream Math

Objectives

- Describe the concept of stream ordering.
- Use rules to come to an outcome.

New Terminology

- Stream order a measure of the relative size of a stream.
- Tributary a water channel that feeds into a larger water body.
- Converge/Confluence flow together.
- Fibonacci Sequence series of numbers that begins with 0 and 1 where the next number is the sum of the previous two.

0 1 1 2 3 5 8 13 21 34 55 89 144

Technology Integration

• <u>www.arcgis.com</u>

Stream Math

Stream Math Rules:

- 1. Begin with the top of the drainages.
- 2. First order streams are the loose ends.
- Two streams of the same order converge to create a stream of the next higher order. For example, two 1storder streams converge and create a 2nd order stream.
- 4. When a stream converges with a stream of a higher order, it is absorbed by the larger order stream and the order does not change downstream.

Stream Order	# Stream Segments in Order
1st	
2nd	
3rd	
4th	

making the r body k to ath network t rivers er or ool

network. rk. The

cample, ream and it

cam is

ts in orange then

1

vater body. chalk to owpath and network and rivers river or chool

d network. ork. The

xample,

ream and it nters a am is

in orange en

2

Stream Math Rules:

- Begin with the top of the drainages.
- First order streams are the loose ends.
- Two streams of the same order converge to create a stream of the next higher order. For example, two 1storder streams converge and create a 2nd order stream.
- When a stream converges with a stream of a higher order, it is absorbed by the larger order stream and the order does not change downstream.

Stream Order	# Stream Segments in Order
1st	
2nd	
3rd	
4th	

Stream Math – solutions

Stream Math Rules:

- 1. Begin with the top of the drainages.
- 2. First order streams are the loose ends.
- Two streams of the same order converge to create a stream of the next higher order. For example, two 1storder streams converge and create a 2nd order stream.
- 4. When a stream converges with a stream of a higher order, it is absorbed by the larger order stream and the order does not change downstream.

Stream Order	# Stream Segments in Order
1st	15
2nd	7
3rd	5
4th	2

Additional Resources (added after training sessions)

- Leaf analogy to teach concepts in watersheds (found online after we conducted our training; fits very well!)
 - <u>https://serc.carleton.edu/integrate/workshops/sustainability-action/activities/190419.html</u>
- Rivers Crosswords
 - May choose to remove word banks for a bigger challenge
 - Link to TDOT maps
 - <u>https://www.tn.gov/tdot/driver-how-do-i/look-at-or-order-state-maps/maps/state-maps.html</u>
 - ordering: <u>https://www.tn.gov/tdot/driver-how-do-i/look-at-or-order-state-maps/maps/map-ordering.html</u>

Water Webs Sheets

- The sheets for the water webs matching competition can be found at the link below. Note: the file names do not correspond with the alphanumeric matches. Each drainage web is given a number and each aerial photo a letter, indicated in a textbox on each figure.
 - <u>https://tiny.utk.edu/waterwebs</u>

(a) Learning objective 1

(d) Learning objective 2

(g) Learning objective 4

(b) Learning objective 2

(c) Learning objective 2

(e) Learning objective 3

(f) Learning objective 3

(h) Learning objective 6

(i) Future work

Source: https://serc.carleton.edu/integrate/workshops/sustainability-action/activities/190419.html

Welcome to Tennessee Rivers

East Side

ACROSS

4 What county's southern border lies in the Cherokee Reservoir and Holston River?

5 What river has tributaries of Clear Fork, New River, and Wolf River?

9 Which national park contains the headwaters of the Little River?

10 What is the name of the dam nearest the confluence of the Collins, Rocky, Caney Fork, and Calfkiller Rivers?

1 What river is dammed to form Douglas Reservoir in Jefferson County?

2 What reservoir is just downstream from the confluence of the East and West Forks of the Obey River in Pickett County?

3 What is the largest reservoir located entirely in the Cherokee National Forest?

6 Into which reservoir does the Sequatchie River discharge?

7 In which wildlife management area (WMA) does the Obed River begin in Cumberland County?

8 Which river has the longest distance contained on the map?

WORD BANK: CATOOSA, CUMBERLAND, DALEHOLLOW, FRENCHBROAD, GRAINGER, GREATSMOKYMOUNTAINS, NICKAJACK, TENNESSEE, WALLING, WATAUGA

Welcome to Tennessee Rivers

West Side

ACROSS

1 Which sinuous river in south-central Tennessee has a tributary called the Piney River?

4 What river flows through the city of Clarksville, Tennessee?

6 What river creates the longest stretch of state border in Tennessee?

8 In what county does the Wolf River enter Tennessee from Alabama?

9 What tributary to the Buffalo River begins near the Natchez Trace Parkway?

10 What river begins in Alabama and flows through multiple national wildlife refuges (NWRs)?

DOWN

2 After what tree is the Tennessee State Park named where the South Fork and Middle Fork of the Obion River converge?

3 The Obion and Forked Deer River converge at what National Wildlife Refuge (NWR) before emptying into the Mississippi River?

5 What tributary to Kentucky Lake has its headwaters in Henderson County?

7 Through how many counties doe the North Fork Obion River flow until it reaches the Mississippi River?